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Currently, cancer has become one of the major refractory diseases threatening human health. Complementary and alternative
medicine (CAM) has gradually become an alternative choice for patients, which can be attributed to the high cost of leading cancer
treatments (including surgery, radiotherapy, and chemotherapy) and the severe related adverse effects. As a critical component
of CAM, traditional Chinese medicine (TCM) has increasing application in preventing and treating cancer over the past few
decades. Huanglian Jiedu Decoction (HJD), a classical Chinese compound formula, has been recognized to exert a beneficial
effect on cancer treatment, with few adverse effects reported. Nevertheless, the precise molecular mechanism remains unclear
yet. In this study, we had integrated systems pharmacology and bioinformatics to explore the major active ingredients against
cancer, targets for cancer treatment, and the related mechanisms of action. These targets were scrutinized using web-based Gene
SeT Analysis Toolkit (WebGestalt), and 10 KEGG pathways were identified by enrichment analysis. Refined analysis of the KEGG
pathways indicated that the anticancer effect of HJD showed a functional correlation with the p53 signaling pathway; moreover,
HJD had potential therapeutic effect on prostate cancer (PCa) and small cell lung cancer (SCLC). Afterwards, genetic alterations
and survival analysis of key targets for cancer treatment were examined in both PCa and SCLC. Our results suggested that such
integrated research strategy might serve as a new paradigm to guide future research on Chinese compound formula. Importantly,
such strategy contributes to studying the anticancer effect and the mechanisms of action of Chinese compound formula, which has
also laid down the foundation for clinical application.

1. Introduction

According to a WHO report, cancer has become the lead-
ing killer of human health, which is associated with high
recurrence rate and high mortality. Typically, the year 2012
has witnessed about 14 million new cancer cases and 8.2
million cancer-related deaths. It is estimated that the annual
new cases will increase from 14 million to 22 million over
the coming 20 years [1]. The existing anticancer treatments
mainly include surgery, radiotherapy, and chemotherapy.
However, the patientswould eventually choose to discontinue
the treatment due to the high cost of radiotherapy and
chemotherapy, as well as the serious related adverse effects
[2]. With the development of medicine, cancer is treated

based on a comprehensive and diversified treatment, and
complementary and alternativemedicine (CAM) has become
an alternative option for patients under such circumstances.
Traditional Chinese medicine (TCM), a critical component
of CAM, has been increasingly applied in preventing and
treating cancer over the past few decades [3, 4]. As an
adjuvant therapy, Chinesemedicine shows beneficial effect on
cancer treatment with few adverse effects reported [5].

Huanglian Jiedu Decoction (HJD), first recorded in the
Prescriptions for Emergent Reference (Zhouhou Beiji Fang)
written by Ge Hong, consists of four herbs, including Cop-
tidis Rhizoma (Huanglian), Scutellariae Radix (Huangqin),
Phellodendri Chinrnsis Cortex (Huangbo), and Gardeniae
Fructus (Zhizi). HJD is a representative formula for cancer
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treatment, which is frequently employed to treat pancreatic
cancer, breast cancer, liver cancer, and colorectal cancer
(CRC) in clinical practice [6]. For instance, some results of
pharmacological experiment suggest that HJD has anticancer
effect on human liver cancer cells both in vitro and in vivo,
which can also markedly extend the survival time of liver
cancer bearing mice [7, 8]. However, the precise mechanism
of its anticancer effect remains unclear so far.

Chinese compound formula is characterized by the syn-
ergistic effects of multicomponent and multitarget. On this
account, a method suitable for its characteristics is needed
to reveal the underlying mechanism of action. Systems
pharmacology is a new discipline studying the regularity and
mechanism of drug-organism interaction at the system level
[9]. It can study the changes in body function mechanisms
caused by drug treatment for diseases from molecules,
cells, tissues, to organs. Moreover, it would establish the
interrelationships between drug efficacy and the organism
at both microscopic levels (molecular and biochemical net-
work levels) and macroscopic levels (tissue, organ, and
overall levels). Besides, extremely abundant cancer data have
been produced in recent years, with the rapid develop-
ment of bioinformatics technology, including microarray,
proteomics, and other high-throughput screening assays. By
integrating systems pharmacology and bioinformatics, this
study aimed to explore the relationships of HJD with its
cancer-related targets and interactive genes and to reveal the
underlying molecular mechanisms of action. Such strategy
would be helpful for investigating the anticancer effect and
the mechanism of action of Chinese compound formula,
which could also provide the basis for clinical application. A
flowchart of the research approach was presented in Figure 1.
In addition,TheChinese herbal compound can be considered
as a weak inhibitor with multicomponent and multitarget,
and there are synergistic effects amongmultiple components.
We hope to explore how this compound can actually work
in the treatment of cancer, but it must be taken into account
that the components of the compound are complex and not
every component can play a role.Therefore, we screen out the
main active components through multiple parameters and
predict the targets of the active ingredients, so as to infer the
therapeutic effect.

2. Materials and Methods

2.1. Construction of Cancerous Target Network and Chemical
Component Database. All targets for cancer treatment could
be accessed inDrugBank database (http://www.drugbank.ca/),
and the cancerous target network was thereby constructed
through Cytoscape [12]. In addition, HJD was comprised
of four herbs, including Coptidis Rhizoma (Huanglian),
Scutellariae Radix (Huangqin), Phellodendri Chinrnsis Cortex
(Huangbo), and Gardeniae Fructus (Zhizi). All chemical
components of these Chinese herbs had been collected into
TcmSP [13], TcmID [14], TCM Database@Taiwan [15], and
NCBI Pubchem databases and had been standardized to
a constituent data supplemented in the TcmSP database.
Finally, the number of chemical compounds in HJD was
obtained, as shown in the Appendix.

2.2. Screening the Active Ingredients by OB Prediction. Oral
bioavailability (OB) in vivo (%F), the unchanged fraction
of the orally administered dose achieving systemic circula-
tion, is one of the most commonly used pharmacokinetic
parameters in drug screening cascades. In this study, a robust
calculative system OBioavail 1.1 [16] was employed to predict
the OB of the compounds, since it was difficult to assess the
bioavailability of the complex TCM by “wet” experiments.
It has combined the metabolism (cytochrome P450 3A4)
and transporter (P-glycoproteins) information. Using this
system, compoundswith lowerOB could be discarded, so that
the amount of the original compounds could be distinctly
reduced to a smaller set suitable for Chinese compound
formulas. Compounds with the OB of ≥30% were selected
as the active ingredients in this study. Such a threshold
was selected based on (1) the use of a minimum number
of components to maximally extract HJD information and
(2) the fact that the obtained model could be reasonably
explained by the reported pharmacological data.

2.3. Screening the Active Ingredients by Drug-Likeness Predic-
tion. Before target prediction, some compounds considered
chemically unsuitable for use were removed by drugs similar-
ity index,which could be deduced as a delicate balance among
the molecular properties affecting pharmacodynamics and
pharmacokinetics, ultimately influencing its absorption, dis-
tribution, metabolism, and excretion (ADME) in human
body like a drug. In this study, the drug-likeness (DL) index
of a new compoundwas calculated according to the Tanimoto
similarity [17].

𝑓 (𝐴, 𝐵) =
𝐴 ⋅ 𝐵

|𝐴|2 + |𝐵|2 − 𝐴 ⋅ 𝐵
(1)

where A represented the new compound and B stood for the
average DL index of all the 6511 molecules in the DrugBank
database based on the Dragon soft descriptors. Accordingly,
molecules with the drug-likeness of <0.18 were also removed.
Finally, compounds with both the OB of ≥30% and DL of
≥0.18 were considered as the active ingredients.

2.4. Prediction of the Targets of Active Ingredients. SysDT [18],
the drug-target prediction model, was adopted to predict the
targets of active ingredients. Briefly, SysDT was based on the
6511 drugs and 3987 targets of DrugBank database as well as
the mutual correlation degree. Moreover, it was established
using the stochastic forest algorithm and the support vector
machine (SVM) algorithm, respectively. It turned out that the
prediction model constructed by SVMwas superior, with the
consistency of 82.83%, sensitivity of 81.33%, and specificity
of 93.62%. Using such model, targets with the SVM of > 0.7
were predicted as the putative targets of active ingredients.
In addition, target information was integrated from SEA [19],
STITCH [20], TTD [21], and HIT [22] databases to supple-
ment this predictivemodel. Moreover, information regarding
the physiological functions of all targets was obtained from
the TTD and UniProt databases.

2.5. Construction of the Network and Topological Analysis.
Associations between active ingredients and putative targets
were constructed into the compound-target network of HJD

http://www.drugbank.ca/
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Figure 1: Integrated systems pharmacology and bioinformatics approach.
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Table 1: The topological features of the PPI network.

Parameters numerical value Parameters numerical value
Clustering coefficient 0.667 Number of nodes 98
Connected components 1 Number of edges 1027
Network diameter 4 Network density 0.216
Network radius 2 Network heterogeneity 0.676
Network centralization 0.474 Isolated nodes 0
Shortest paths 9506(100%) Number of self-loops 0
Characteristic path length 2.006 Multiedge node pairs 0
Avg. number of neighbors 20.959 - -

using Cytoscape v3.4.0 software [12], which was thenmapped
with the cancerous target network to obtain the compound-
cancer target network of HJD, including all HJD-related
targets for cancer treatment. Afterwards, the protein-protein
interaction (PPI) network of HJD-related targets for cancer
treatment was constructed by STRING [23]. Subsequently,
topology analysis was performed using theNetworkAnalyzer
plug-in to output the main topological parameters of this
network [24].

2.6. Screening Key Targets and KEGG Pathway Enrichment
Analysis. The centrality algorithm is a key method to mea-
sure the importance degree of nodes in the whole network,
with a larger value indicating a higher importance degree
of node in the whole network and greater influence on the
structure and function of the whole network. In this study,
the degree centrality algorithm was adopted as the major
algorithm, supplemented by the closeness centrality and the
betweenness centrality algorithm, so as to select and evaluate
the key anticancer targets of HJD. Additionally, the biological
information and attribution embedded in the anticancer
targets were then analyzed using a web-based integrated
data mining system, WebGestalt [25]. Biochemical pathways
and functions linked to the anticancer targets of HJD were
specifically queried and navigated by the KEGG pathway
enrichment analysis tool in WebGestalt. Eventually, the top
10 pathways with an adjusted P value of <0.01 were selected.

2.7. Exploration of the Cancer Genomics Data Linked to HJD
by cBio Cancer Genomics Portal. The cBio Cancer Genomics
Portal (http://cbioportal.org), an open platform to explore the
multidimensional cancer genomics data, can encapsulate the
molecular profiling data obtained from cancer tissues and cell
lines into the readily understandable genetic, epigenetic, gene
expression, and proteomic events [26]. Specifically, the com-
plex cancer genomics profiles can be easily accessed using the
query interface of the Portal, which enables the researchers to
explore and compare the genetic alterations across samples.
Furthermore, the obtained underlying data can thereby be
linked to clinical outcomes, which has facilitated the novel
discovery in biological systems.

In this study, the cBio Portal was utilized to examine
the connectivity of HJD-related targets for cancer treatment
across all studies on PCa and SCLC available in the databases.
These targets in all sample studies on PCa and SCLC were
classified as altered or nonaltered using the Portal search

function. The genomics datasets were then presented using
OncoPrint as the heatmap, a visually appealing display
of alterations in microarrays across cancer samples [27].
Another feature of the Portal was that, it could generatemulti-
ple visualization platforms through grouping PCa abd SCLC-
associated alterations using the input from key HJD-related
targets for cancer treatment [27–31]. In the meantime, the
survival of these targets in PCa and SCLCwas analyzed using
survival option embedded in the Portal, a tool integrating the
survival Kaplan-Meier estimate and the survival data in the
TCGA database.

3. Results

3.1. Screening the Active Ingredients and Visualization of the
Compound-Cancer Target Network. Compounds contained
in all 4 herbs constituting HJD were collected through
several databases, including Huanglian (48), Huangqin (143),
Huangbo (140), and Zhizi (98). A total of 85 compounds
with OB of ≥ 30% and DL of ≥ 0.18 were identified, among
which only 59 active ingredients targeting the anticancer
targets were screened (the Appendix). Correlations of the
active ingredients with their anticancer targets were visu-
alized through Cytoscape, and the compound-cancer target
network was also obtained for subsequent analysis (Figure 2).

3.2. Construction of the PPI Network of HJD-Related Targets
for Cancer Treatment as well as Topological Analysis. The
HJD-related targets for cancer treatment could be obtained
through the compound-cancer target network. In addition,
the “protein-protein interaction (PPI) option” embedded in
STRING was also adopted for further analysis, and a PPI
network containing 98 interactive targets was also identified
(Figure 3). Later, the topological features of this network
were calculated with the Network Analyzer plug-in (Table 1),
which consisted of an entire portion of the interaction
between the anticancer targets, with an average number
of direct neighbors of 20.959. Besides, the degree of some
nodes was much higher than the average number of direct
neighbors. In the degree centrality algorithm, a higher degree
of a node indicated greater impact on the whole network.
In this network, the degree distribution between nodes was
uneven. These nodes, which were twice the average number
of direct neighbors, were then define as Hub nodes in
this study, indicating their importance in the network for
subsequent investigation.

http://cbioportal.org
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Figure 2: The compound-cancer target network of HJD. The yellow nodes represented active ingredients, while the red ones stood for
anticancer targets.

3.3. Searching and Analysis of the Key Targets. Three cen-
trality algorithms were employed for key target screen-
ing, including degree centrality, closeness centrality, and
betweenness centrality. Of them, the closeness centrality
algorithm has emphasized the average shortest path length
between nodes and other nodes. In contrast, the betweenness
centrality algorithm measures the number of nodes on the
shortest path of other nodes, which suggests the frequency
that the shortest path between the other nodes passes through
one node. In other words, if the shortest path of the other
nodes often passes through this node, then this node shows a
high importance or ability, which can modulate information
transmission of other nodes as a link between the other
nodes.

These 3 algorithms were used to calculate the whole
network, and the top 30 targets were summarized based
on the algorithm results, as shown in Table 2. Consistently,
nodes that were twice the average number of direct neighbors
were defined as Hub nodes, including TP53, AKT1, EGF,
PCNA, JUN, VEGFA, ESR1, and IL6. It should be noted that
TP53 ranked the top among the three centrality algorithms,
indicating that the primary target pathway under control or
mediated by HJD was associated with TP53. In addition,
AKT1 took up the second place, which was only second to
TP53. As a critical component in the PI3K-AKT signaling
pathway, AKT1 was closely correlated with the occurrence
and development of human cancers. Baicalin and baicalein,
the main active ingredients of Huangqin, had been reported

to show a definite relationship with the downregulation
of the PI3K-AKT pathway in anticancer effect [23, 24].
Consequently, theAKT1-related signaling pathwaymight also
have an important link with the anticancer effect of HJD.

3.4. Analysis of the KEGG Pathway. To explore the biolog-
ical mechanism underlying the anticancer effect of HJD,
the KEGG pathway enrichment analysis embedded in
WebGestalt was performed. Typically, the top 10 KEGG path-
ways linked to all targets in the PPI network were obtained,
including cell cycle (24), pathways in cancer (31), the p53
signaling pathway (15), the AGE-RAGE signaling pathway in
diabetic complications (17), prostate cancer (16), endocrine
resistance (16), hepatitis B (18), the PI3K-Akt signaling path-
way (25), small cell lung cancer (14), and the FoxO signaling
pathway (15) (Table 3). Broad grouping of the KEGGpathway
analysis suggested that the anticancer effect of HJD was
closely correlated with the following cancer-related signaling
pathways with potential mechanisms, including (1) control
of cancer cell proliferation and survival by p53-mediated cell
cycle control, (2) the PI3K-Akt signaling pathway regulating
the growth, proliferation, and invasion and metastasis of
cancer cells by mediating the FoxO signaling pathway, and
(3) the potential treatment of breast cancer achieved through
regulating endocrine resistance. TP53 ranked the top among
the 3 centrality algorithms (Table 2); as a result, emphasis was
directed to the p53 signaling pathway. The KEGG analysis
results probably indicated that the anticancer effect of HJD
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Figure 3: The PPI network of HJD-related targets for cancer treatment. The blue nodes represented HJD-related targets, while the edges
represented the interaction between targets.

showed a functional correlation with TP53. In addition,
the enrichment KEGG pathway analysis also suggested that
16 and 14 targets were associated with PCa and SCLC,
respectively (Table 3).

3.5. Mining the Genetic Alterations and Survival Analysis. It
had been proved that HJD displayed therapeutic effects on
different cancers; however, its specific biological mechanisms
remained unclear so far. KEGG enrichment analysis revealed
that HJD was correlated with the cancer-related pathways

(Table 3). To further explore the validity of such correlation,
cBio Portal, a web-based integrated data mining system,
was adopted to examine the genetic alterations and survival
analysis associated with HJD-related targets in PCa and
SCLC.The p53 signaling pathwaywas themain target of HJD;
consequently, the overlapping targets of the p53 signaling
pathway with PCa and SCLC were studied. The results
discovered that 8 overlapping targets were associated with
the KEGG assay embedded in WebGestalt, including 7 in
PCA (CDK2, CDKN1A, MDM2, CCND1, TP53, CCNE1, and
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Table 2: The centrality analysis of PPI network of HJD-related cancer targets.

Name Degree Name Betweenness
Centrality Name Closeness

Centrality
TP53 66 TP53 0.12965202 TP53 0.75193798
AKT1 49 HSP90AA1 0.07551998 AKT1 0.65986395
EGF 47 HSPA4 0.06902023 EGF 0.65100671
PCNA 47 IL6 0.06776382 VEGFA 0.64666667
JUN 46 AKT1 0.04867524 PCNA 0.64666667
VEGFA 44 VEGFA 0.04389668 JUN 0.64666667
ESR1 42 PCNA 0.03662677 IL6 0.63815789
IL6 42 EGF 0.034913 ESR1 0.62987013
CDK1 41 ESR1 0.02917485 BCL2 0.62580645
BCL2 41 JUN 0.02822688 EGFR 0.62179487
HSP90AA1 40 TNF 0.02701286 HSP90AA1 0.61783439
CDK2 40 CDK1 0.02175952 TNF 0.61783439
CCND1 40 PTGS2 0.02156667 CDKN1A 0.61006289
EGFR 40 PPARG 0.02083383 FOS 0.61006289
TNF 39 AKR1C3 0.02075601 PIK3CG 0.61006289
CDKN1A 38 ALOX5 0.02061856 HSPA4 0.60625
PIK3CG 37 AR 0.01863776 CDK2 0.60625
FOS 37 CDK2 0.01810019 AR 0.60248447
HSPA4 37 NOS3 0.017597 MAPK8 0.60248447
MAPK8 35 EGFR 0.01749873 PTGS2 0.59876543
AR 34 CCND1 0.01665403 CDK1 0.59509202
CCNB1 33 MAPK8 0.01587777 CCND1 0.59509202
NOS3 33 CDKN1A 0.01556023 NOS3 0.59146341
PTGS2 33 BCL2 0.0151564 MMP2 0.58083832
CHEK1 30 FOS 0.01323593 MAPK14 0.58083832
CDKN1B 30 MMP2 1.25E-02 CALM2 0.57058824
MMP2 30 PGR 9.72E-03 CALM1 0.57058824
MAPK14 30 CDKN1B 9.65E-03 CDKN1B 0.56725146
CCNA2 29 PIK3CG 9.52E-03 MDM2 0.56725146
MDM2 29 CALM2 9.18E-03 KDR 0.55747126

CCNE2) and 5 in SCLC (CDK2, CCND1, TP53, CCNE1, and
CCNE2). Therefore, the genomic and clinical characteristics
of these targets in PCa and SCLCwere examined, respectively
(Table 2).

13 studies on PCa were analyzed [10, 32–40], the results
of which indicated 1.9% to 63.9% alterations in the gene
sets/pathways submitted for analysis (Figure 4(a)). Multiple
genetic alterations observed across each set of cancer samples
from the Michigan study [10] with the most significant
genomic changes were summarized and presented using
OncoPrint. The results indicated that 37 cases (63%) had
an alteration in at least one of the 7 targets, and the
alteration frequency in each of the selected targets was
presented in Figure 4(b). CDK2, CDKN1A, and CCNE1 were
not associated with genetic alterations. For MDM2, CCND1,
and CCNE2, most alterations were classified as amplifi-
cation. TP53-associated genetic alterations included deep
deletions andmissense/truncatingmutations.The alterations
in these targets showed a cooccurrence trend across samples.
However, mutual exclusivity analysis revealed no statistical

significance (p=0.183) (data not shown). More interestingly,
cases with genetic alterations were linked with a poorer
survival compared with those without alterations (P=0.443,
Figure 4(c)).

Among the 3 SCLC studies analyzed [11, 41, 42], 78.6%
to 93.6% alterations were found in the gene sets/pathways
submitted for analysis (Figure 5(a)). Multiple genetic alter-
ations observed across each set of cancer samples from the
U Cologne study with the most significant genomic changes
were summarized and presented using OncoPrint [11]. The
results indicated that 103 cases (94%) had an alteration in
at least one of the 5 targets, and the alteration frequency
in each of the selected targets was shown in Figure 5(b).
Different from results of PCa study, these results indicated
that almost all genetic alterations occurred in TP53, whereas
no genetic alterationswere seen inCDK2 orCCND1. CCNE1-
associated genetic alterations were classified as missense
mutations, while CCNE2-associated ones were classified
as truncating mutations. In comparison, TP53-associated
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Table 3: KEGG pathway analysis.

Pathway Name #Gen Uniprot name (corresponding gene set) Statistics

Cell cycle 24

CDK2 CDK7 CDKN1A CDKN1B CHEK1 MCM5MDM2
PCNA ATY CCND1 BUB1B TP53 CCNA2 CCNA1 CCNB1
CCND3 CCNE1 CCNH CCNB2 CCNE2 CDK1 CDC6
CDC20 CDC25C

C=124; O=24; E=1.59;
R=15.09; rawP=0e+00;

adjP=0e+00

Pathways in cancer 31

CDK2 CDKN1A CDKN1B CKS1B CKS2 EGF EGFR AKT1
FOS GSTP1 HSP90AA1 IL6 AR JUNMDM2MMP1 MMP2
PIK3CG PPARGMAPK8 PTGS2 CCND1 BCL2 RXRA
RXRB TP53 VEGFA VEGFC CCNA1 CCNE1 CCNE2

C=397; O=31; E=5.09;
R=6.09; rawP=0e+00;

adjP=0e+00

p53 signaling pathway 15
CDK2 CDKN1A CHEK1 MDM2MDM4 SERPINE1 ATR
CCND1 TP53 CCNB1 CCND3 CCNE1 CCNB2 CCNE2
CDK1

C=69; O=15; E=0.88;
R=16.95; rawP=4.22e-15;

adjP=3.78e-13
AGE-RAGE signaling
pathway in diabetic
complications

17
CDKN1B COL1A1 MAPK14 AKT1 F3 IL6 JUNMMP2 NOS3
SERPINE1 PIK3CGMAPK8 CCND1 BCL2 TNF VEGFA
VEGFC

C=101; O=17; E=1.3;
R=13.13; rawP=5e-15;

adjP=3.78e-13

Prostate cancer 16
CDK2 CDKN1A CDKN1B EGF EGFR AKT1 GSTP1
HSP90AA1 AR MDM2 PIK3CG CCND1 BCL2 TP53 CCNE1
CCNE2

C=89; O=16; E=1.14;
R=14.02; rawP=1.15e-14;

adjP=7e-13

Endocrine resistance 16 CDKN1A CDKN1B MAPK14 EGFR AKT1 ESR1 ESR2 FOS
JUNMDM2MMP2 PIK3CGMAPK8 CCND1 BCL2 TP53

C=98; O=16; E=1.26;
R=12.73; rawP=5.64e-14;

adjP=2.85e-12

Hepatitis B 18
CDK2 CDKN1A CDKN1B AKT1 FOS IL6 JUN PCNA
PIK3CGMAPK8 CCND1 BCL2 TNF TP53 CCNA2 CCNA1
CCNE1 CCNE2

C=146; O=18; E=1.87;
R=9.62; rawP=2.03e-13;

adjP=8.77e-12

PI3K-Akt signaling pathway 25

BCL2L11 CDK2 CDKN1A CDKN1B CDC37 COL1A1 EGF
EGFR AKT1 FLT1 HSP90AA1 IL6 KDRMDM2 NOS3
PIK3CG CCND1 BCL2 RXRA TP53 VEGFA VEGFC
CCND3 CCNE1 CCNE2

C=341; O=25; E=4.37;
R=5.72; rawP=4.23e-13;

adjP=1.6e-11

Small cell lung cancer 14 CDK2 CDKN1B CKS1B CKS2 AKT1 PIK3CG PTGS2
CCND1 BCL2 RXRA RXRB TP53 CCNE1 CCNE2

C=86; O=14; E=1.1; R=12.7;
rawP=2.52e-12;
adjP=8.48e-11

FoxO signaling pathway 15 BCL2L11 CDK2 CDKN1A CDKN1B MAPK14 EGF EGFR
AKT1 IL6 MDM2 PIK3CGMAPK8 CCND1 CCNB1 CCNB2

C=134; O=15; E=1.72;
R=8.73; rawP=1.03e-10;

adjP=3.12e-09
The following statistics were listed in the row:C: the number of reference targets in the category;O: the number of targets in both the gene set and the category; E:
the expected number in the category; R: ratio of enrichment; rawP: p value upon hypergeometric test; and adjP: p value adjusted by themultiple test adjustment.

genetic alterations included both missense mutations and
truncating mutations. The mutual exclusivity analysis still
displayed no statistical significance (p = 0.876) (data not
shown).More interestingly, cases with genetic alterations also
had a poorer survival relative to those without (P=0.166,
Figure 5(c)).

4. Discussion

HJD serves as the object of study in this work. To elucidate the
anticancer molecular mechanism of HJD, we have integrated
systems pharmacology and bioinformatics. As a result, a
number of public databases as the research basis and a set
of tools are available to elucidate the molecular mechanisms
and the relationship with the clinical outcomes of cancers. 3
steps are carried out in our workflow. (i)The cancerous target
network is constructed through the DrugBank database,
and all chemical components contained in the 4 medicines
are obtained by databases, such as TcmSP, TcmID, TCM

Database@Taiwan, and NCBI Pubchem. Subsequently, the
active ingredients are screened based on the criteria of OB of
≥30% andDL of ≥0.18, and the targets of these active ingredi-
ents were then predicted using the SysDT model. Ultimately,
59 anticancer active ingredients and their anticancer targets
were identified bymappingwith the cancerous target network
(the Appendix). (ii) Based on these anticancer targets, a PPI
network containing 98 targets is constructed by STRING
(Figure 2), and topological analysis is therefore performed.
Eight key anticancer targets (including TP53, AKT1, EGF,
PCNA, JUN, VEGFA, ESR1, and IL6) are screened through
the topological parameters (Table 1) and 3 centrality algo-
rithms (Table 2). Afterwards, the top 10 KEGG pathways are
identified by enrichment analysis of the 98 targets (Table 3).
(iii) Taking TP53 as the main object of study, we have
compared the p53 signaling pathway between PCa and SCLC,
and 8 overlapping targets are obtained. Then, the genetic
alterations and survival analysis of the overlapping targets in
PCa and SCLC are performed, so as to evaluate the relevance
of the p53 signaling pathway with HJD in treating cancer.
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Figure 4: The genetic alterations and survival analysis related to 7 overlapping targets (including CDK2, CDKN1A, MDM2, CCND1, TP53,
CCNE1, and CCNE2) in PCa studies embedded in cBio cancer genomics Portal. (a) Overview of changes in 7 overlapping targets in genomics
datasets available in 13 different PCa studies. (b) OncoPrint: a visual summary of alterations across a set of prostate samples (data taken
from the Michigan studies, Nature 2012) [10] based on a query of the 7 overlapping targets. Distinct genomic alterations including mutations
and copy number alterations (CNAs, exemplified by gene amplifications and homozygous deletions) were summarized, and the color codes
represented % changes) in particular targets in individual cancer samples. Each row stood for a gene, and each column represented a cancer
sample. Red bars stood for gene amplifications, blue bars represented homozygous deletions, and green squares indicated nonsynonymous
mutations. (c) K-M curve between groups with alterations and without alterations. Red line represented cases with alterations, and the blue
one indicated cases without. The X-axis was overall survival (OS, months), and the Y-axis stood for the survival rate. Kaplan-Meier test was
performed.
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Figure 5: The genetic alterations and survival analysis related to the 5 overlapping targets (including CDK2, CCND1, TP53, CCNE1, and
CCNE2) in SCLC studies embedded in cBio cancer genomics Portal. (The annotations were consistent with those in Figure 4.) (a) Overview
of changes in 5 overlapping targets in genomics datasets available in 3 different SCLC studies. (b) OncoPrint (data taken from the U Cologne
studies, Nature 2015) [11] based on a query of the 5 overlapping targets). (c) K-M curve between groups with alterations and without
alterations.
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Table 4: Anticancer active ingredients, oral bioavailability (OB), and drug-likeness (DL) of HJD.

Name Active Ingredient Chemical Structure OB/% DL

Huanglian

(R)-Canadine 55.37 0.77

berberine 36.86 0.78

berberrubine 35.74 0.73

Berlambine 36.68 0.82

coptisine 30.67 0.86

epiberberine 43.09 0.78

palmatine 64.6 0.65

quercetin 46.43 0.28

Worenine 45.83 0.87

Huangqin

(2R)-7-hydroxy-5-
methoxy-2-

phenylchroman-4-one
55.23 0.2

5,2󸀠,6󸀠-Trihydroxy-7,8-
dimethoxyflavone 45.05 0.33
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Table 4: Continued.

Name Active Ingredient Chemical Structure OB/% DL

5,2󸀠-Dihydroxy-6,7,8-
trimethoxyflavone 31.71 0.35

5,7,2,5-tetrahydroxy-8,6-
dimethoxyflavone 33.82 0.45

5,7,2󸀠,6󸀠-
Tetrahydroxyflavone 37.01 0.24

5,7,4󸀠-trihydroxy-6-
methoxyflavanone 36.63 0.27

5,7,4󸀠-trihydroxy-8-
methoxyflavanone 74.24 0.26

5,7,4󸀠-Trihydroxy-8-
methoxyflavone 36.56 0.27

acacetin 34.97 0.24

baicalein 33.52 0.21

beta-sitosterol 36.91 0.75

Carthamidin 41.15 0.24
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Table 4: Continued.

Name Active Ingredient Chemical Structure OB/% DL

Dihydrobaicalin qt 40.04 0.21

Dihydrooroxylin 66.06 0.23

ent-Epicatechin 48.96 0.24

Eriodyctiol (flavanone) 41.35 0.24

Moslosooflavone 44.09 0.25

NEOBAICALEIN 104.34 0.44

Norwogonin 39.4 0.21

oroxylin a 41.37 0.23

Panicolin 76.26 0.29
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Table 4: Continued.

Name Active Ingredient Chemical Structure OB/% DL

rivularin 37.94 0.37

Salvigenin 49.07 0.33

sitosterol 36.91 0.75

Skullcapflavone II 69.51 0.44

Stigmasterol 43.83 0.76

wogonin 30.68 0.23

Huangbo

(S)-Canadine 53.83 0.77

campesterol 37.58 0.71

Cavidine 35.64 0.81
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Table 4: Continued.

Name Active Ingredient Chemical Structure OB/% DL

Chelerythrine 34.18 0.78

Dehydrotanshinone II A 43.76 0.4

delta 7-stigmastenol 37.42 0.75

Fumarine 59.26 0.83

Hericenone H 39 0.63

Isocorypalmine 35.77 0.59

phellamurin qt 56.6 0.39

Phellavin qt 35.86 0.44

Phellopterin 40.19 0.28
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Table 4: Continued.

Name Active Ingredient Chemical Structure OB/% DL

poriferast-5-en-3beta-ol 36.91 0.75

rutaecarpine 40.3 0.6

Skimmianin 40.14 0.2

thalifendine 44.41 0.73

Zhizi

3-Methylkempferol 32.03 0.76

5-hydroxy-7-methoxy-2-
(3,4,5-trimethoxyphenyl)

chromone
34.55 0.22

Ammidin 84.07 0.59

crocetin 36.91 0.75
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Table 4: Continued.

Name Active Ingredient Chemical Structure OB/% DL

isoimperatorin 42 0.19

kaempferol 33.55 0.42

Mandenol 45.46 0.23

Sudan III 60.16 0.26

HJD has been suggested in a report to inhibit angiogene-
sis through suppressing the expression of VEGFA andMMP-
9, thus further restraining cancer growth [43]. Similarly, we
also discover that VEGFA is a key target in the anticancer
activity of HJD using network analysis (Table 2). In addition,
a study shows thatHJD can obviously inhibit the proliferation
of human SCLC NCI-H446 cells [44]. Coincidently, our
findings also support that HJD has certain therapeutic effect
on SCLC, which is probably achieved through regulating the
p53 signaling pathway. However, no other related literature
reports that HJD has therapeutic effect on PCa, which may
account for a future research direction pending further
validation of the experiment. Interestingly, we find through
KEGG enrichment analysis that the AGE-RAGE signaling
pathway is also present in diabetic complications. The ther-
apeutic effect of HJD on diabetes and its complications has
been approved in lots of literature; nonetheless, no existing
study indicates HJD works through this pathway. Therefore,
it remains to be further studied whether the AGE-RAGE
signaling pathway may be a potential mechanism of HJD in
treating diabetes and its complications.

Compared with studies integrating systems pharmacol-
ogy and network pharmacology, the current study has a
certain biological rationality, since it has bridged HJD to its
target genes and linked it with biological effects. Moreover,
this study has also illustrated the relationship between the
molecular mechanism of HJD and the clinical outcome of
cancer through a set of network-based tools. This approach
is greatly different from the use of experimental techniques

to prove a few relationships at a time; instead, it can reduce
redundant experiments from different laboratories. The use
of such a new research strategy may remarkably contribute
to (i) understanding the molecular biological mechanisms
of Chinese compound formula, (ii) revealing the primary
effects and targets of HJD on cancers, and (iii) promoting the
clinical use of Chinese compound formula and laying down
the clinical foundation. This method can be used not only
in the study on HJD, but also on other Chinese compound
formulas and on medicine combination therapy.

However, there are some shortcomings deserving our
attention.The compounds contained in the herbal medicines
are obtained based on databases; therefore, the quality of
databaseswould directly affect the final compounds obtained.
Moreover, the selection of screening parameters and the
setting of threshold can also affect the number of active
ingredients obtained. All of these may influence the final
analysis.

In conclusion, the targets of HJD will undoubtedly be
confirmed thanks to a growing number of studies on HJD
carried out using traditional experimental techniques and
methods.However, the relationshipwith the biological effects
of HJD remains unclear yet. We believe that the use of
this method can help to offset some uncertainties of HJD
related to its target and its subsequent phenotypic expression.
Furthermore, this approach contributes to determining the
feasibility of future experiments. In the future, molecular
biology experiments about the key targets and pathways of
HJD can be carried out on the basis of the current study.
Apart from PCa and SCLC, many studies have also reported
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the antitumor effect of HJD on other tumors, such as lung
cancer, liver cancer, breast cancer, and colon cancer. These
findings reveal that it remains to be further studied whether
the connectivity between HJD and PCa as well as SCLC can
be extended to other cancers.

Appendix

See Table 4.
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The data used to support the findings of this study are
available from the corresponding author upon request.
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